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Climate changes have a significant effect on dust extremes. Dust extremes in 

humid ambient air can simultaneously or successively form wet mud deposition on 

the surface of urban areas. The mud deposition on the power network systems and 

devices causes irreversible damage and significantly influences system 

performance and efficiency in southwest Iran. This often results in blackouts that 

cause problems in the operation of urban infrastructure and people's daily 

activities for up to several days. Khuzestan province was chosen as the case study 

in this study, and the climatic conditions and risk assessment of mud formation in 

this area were investigated. Data on a diurnal and monthly timescale of dust and 

humidity level was used for assessing extreme dust and wet conditions. The data 

was taken from Khuzestan synoptic station 8 over 11 years (2009-2019). The 

multivariate copula-based framework is used to calculate univariate and bivariate 

return periods of mud deposition hazard. The results imply that dust anomalies 

increase the probability of dust extreme coincidence with wet extreme and 

occurrence of wet mud hazards in the cold seasons of the year. In addition, limited 

adaptive capacity, shortage of information, and poor coordination and cooperation 

by the authorities caused the large-scale impact of the wet mud hazard in 

Khuzestan. Considering only relative humidity data, the return period of 2017 

Khuzestan mud adhesion hazard is approximately 12 to 43 years. If we consider 

only dust, the return period of 2017 Khuzestan mud adhesion hazard is estimated 

at 80 to 700 years. However, for both dust and relative humidity extremes, the 

joint return periods for TDR (Dust and Relative humidity) and T'DR (Dust or 

Relative humidity) are respectively estimated greater than 200 and lower than 20 

years. 
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1. Introduction 

Compound extreme events are the concurrent occurrence of extreme values for multiple 

variables (Whitney et al. 2021; Zhang et al. 2021). Recently, the risk of compound extremes 

has become challenging in urban areas (Birkmann et al. 2016). Dust storm is one of the most 

typical climate extremes in the Middle East, especially southwest of Iran (Rashki et al. 2021). 

Over the past decades, cycles of dust storms and dust settlement on surfaces have been severe 

and frequent under the influence of climate change (Adukwu et al. 2020).  

In February 2017, many cities in the southwest of Iran were struck by dust storms and 

unprecedented major blackouts. During the power blackout, all critical infrastructures such as 

water, information technology, telecommunications (fixed-network, mobile phones and the 

Internet), transport and education sectors were out of action for several days (KZREC, 2017).  

In dust storms, dust particles settle on surfaces (Sarver et al. 2013), and these particles 

absorb water vapor in humid air environments and form mud on the covers (Hassan et al. 

2016). Additionally, it seems that precipitation, fog, and drizzle could be aggravating the 

situation. The formation of wet mud deposition leaves one of the most adverse effects on all 

aspects of urban life (Yilbas et al. 2016; Lyu et al. 2017), especially power network systems.  

Power networks have become highly complicated (Bialek, 2010). Faults in electric power 

systems, such as short circuits, can lead to disasters (Esen et al. 2015). This reflects the 

dependence of modern life on electricity (Petermann et al. 2011). The formation of wet mud 

deposition on components of a power system was one of the practical culprits in reducing the 

reliability of system operation in the southwest cities of Iran (KZREC, 2017). 

Therefore, it is essential to assess the risk of such events properly (AghaKouchak et al. 

2014). Risk assessment provides basic information for decision-makers to decrease losses and 

seize opportunities (Salvadori et al. 2016). 

Substantial evidence shows traditional risk assessment methods poorly represented extreme 

event dependence structure (Zscheischler & Seneviratne, 2017). It can lead to underestimating 

or overestimating risk assessment and decision-making about compound extreme events 

(Cardona et al. 2012). Traditional risk assessment methods only consider one variant at a time, 

while compound extreme events often interact and are interdependent (Zscheischler et al. 

2018). 

Consequently, in this study Copula functions were employed to estimate the probability of 

occurrence and return periods of mud deposition. A copula is a set of mathematical tools that 

can connect two or more time-independent variables (Nelson, 2003). A copula function is 

defined from 𝐼2(F ,G) to I(H) such that [F(x), G(y), H(x, y)] is a point in I3 with I∈[0, 1], and 

X, Y are continuous random variables with distribution functions F(x)= P (X≤x) and G(y) = 

P(Y≤ 𝑦), and H(x,y)= P(X≤ 𝑥,Y≤y) is a function  of joint distribution. R software was used 

to calculate the copula function. There is a surge of interest in the copula functions in 

compound events research (Kim et al. 2018; Gimeno-Sotelo & Gimeno, 2022) because they 

can combine different marginal distributions (Silva and Lopes 2008). Copulas are widely used 

to estimate the return period of dependent variables and risk assessment (Mesbahzadeh et al. 

2019; Tavakol et al. 2020). Pabaghi et al. (2023) analyzed extreme precipitation events in arid 

and semi-arid regions of Iran. They applied copula functions to compute the joint return 

periods of extreme events, and univariate and bivariate distributions were used to determine 

risk. 

In Klang, Malaysia, Sabri Smail & Masseran (2024) evaluated extreme air pollution events 

using vine copula modeling. Results of the return period measures indicate that extreme air 

pollution events have long waiting periods. 
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Numerous studies have focused on mud deposition hazards and their effects on energy. 

Hassan et al. (2016) characterized dust particles and dryness that affect PV panels. They 

demonstrated dust particles containing alkaline form an alkaline mud solution that can reduce 

the optical transmittance of PV panel glasses. Hasan et al. (2021) reported that environmental 

factors such as dust, wind, humidity, and temperature significantly affect the performance of 

PV modules. Yilbas et al. (2015) investigated the impact of dust and mud on the optical, 

chemical, and mechanical properties of PV protective glass. 

 

 2. Materials and Methods 

2.1. Study area 

Khuzestan province is one of the most important economic and industrial centers in Iran (Fig. 

1). It lies between 47°42'- 50°39' E longitudes and 29°58'-32°58' N latitudes. Annual 

precipitation (226 mm) mainly occurs in winter, and the mean annual temperature is 31 to 

50°C. The warm season is an extremely effective period for dust storm activity in Khuzestan. 

This province is surrounded by a huge source of gas and oil. The presence of big industrial 

factories, the National Iranian South Oil Fields Company, and the National Iranian Drilling 

Company has turned this province into a central hub of power generation in Iran.  

 

Fig 1. Location of Khuzestan province and synoptic stations used in this study 

 

2.2. Data collection 

To investigate the wet mud deposition in Khuzestan, a 3-hourly and daily time-step was 

obtained from the number of dusty days and relative humidity. Data was acquired from the 

Iran Meteorological Organization (IMO) (https://irimo.ir/far/index.php) from the 8 

meteorological stations distributed in the study areas spanning 2009 to 2019. 

 

2.3. Methods 

2.3.1. Copula function overview 

Here is a brief overview of the essential aspects of copula function. We consider (U, V) a random 

pair with U and V, while univariate marginal distributions are uniform on the interval (0, 1). 

By Sklar theorem, a copula C is defined as a joint distribution function, more precisely, 

C (u, v) = P (U ≤ u, V ≤ v), u, v ∈ (0, 1)                                   (1) 
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If (Y1... Yd) ∈ ℝd has a continuous multivariate distribution with F (y1,…, yd ) = Pr (Y1 ≤ 

y1, . . . , Yd ≤ yd ), there is a function of copula C : [0, 1]d →[0, 1] of F  

F (y1,…, yd ) = C (F1(y1), . . . , Fd (yd ))                                                 (2) 

 

2.3.2. Fitting the copula 

This study employed the copula models belonging to the Elliptical and Archimedean families. 

Copula functions with different structures are used to fit the data. In the first step, random 

variables transform to uniformly marginal distributions [0, 1], thus allowing us to model the 

joint probability distribution.  

By using Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), 

statistics from several copulas, i.e. Frank (Archimedean families), Gaussian, and Student-t 

(Elliptical families) copula functions, were selected. The Akaike information criterion (AIC) is 

an estimator of prediction error and thereby the relative quality of statistical models for a given 

set of data. Given a collection of models for the data, AIC estimates the quality of each model, 

relative to each of the other models. Thus, AIC provides a means for model selection. 

Bayesian Information Criterion (BIC) is an estimate of a function of the posterior probability 

of a model being true, under a certain Bayesian setup. Table 1 shows the expressions of the 

copula models used in this content. 

Table 1. Archimedean and Elliptical expressions of copulas 

Model C(u,v) α ∈ 

Frank 

 

( 𝑢, 𝑣 ∣ 𝜃 ) = −
1

𝜃
log(1 +

(exp(−𝜃u) − 1)(exp(−θ𝑣) − 1

exp(−𝜃) − 1)
 

For 𝜃 ∈ ℝ ∖ {0} 

Gaussian 

 

𝐶( 𝑢, 𝑣 ∣ 𝜃 ) = ∫ ∫
1

2𝜋√1 − 𝜃²
exp⁡{

2𝜃𝑠𝑡 − 𝑠² − 𝑡²

2(1 − 𝜃2)

Φ−1(𝑣)

−∞

Φ−1(𝑢)

−∞

}𝑑𝑠𝑑𝑡 

 

u,v 𝜖 (0, 1) 

Student-t 

 

𝐶( 𝑢, 𝑣 ∣ 𝜃 ) = ∫ ∫
ᴦ(
(𝑣 + 2)

2
)

ᴦ (
𝑣
2
) 𝑣𝜋√1 − 𝜃²

(1 +
𝑠² + 𝑡² − 2𝜃𝑠𝑡

𝑣(1 − 𝜃²
)

𝑇𝑣
−1(𝑣)

−∞

𝑇𝑣
1−(𝑢)

−∞

𝑑𝑠𝑑𝑡 

 

u,v 𝜖 (0, 1) 

 

2.3.3. Parameter estimation 

Frank, Gaussian, and Student-t copulas are described by parameter (θ). This study also 

employed Kendall's rank correlation coefficient, Pearson's correlation, and Spearman's rank 

correlation to estimate the copula parameter, θ. 

 

2.3.4. Return periods 

The average time interval of an occasion over time E (L) can calculate as follows: 

𝐸(𝐿) = 𝑁
𝑛⁄     (3) 

Where L is the time interval between events, n is the number of occasions, and N is the 

length of time of an experience. In this study, wet mud deposition risk assessment was 

estimated by considering the univariate and bivariate return period viewpoint. 
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The return period of the bivariate compound extreme events can also be considered a joint 

return period. Based on Shiau's (2006) proposed methodology, the bivariate return period of 

wet mud deposition (dust and wet extreme) can be categorized into two cases as follow: 

For the two random variables D (e.g., dust) and R (e.g., relative humidity), the joint return 

period with cumulative distribution can be described as D  r and R  d (TDR) and the return 

period for D  r or R  d (T'DR). TDR and T'DR are joint return periods in that the specified 

threshold dust (d) and/or relative humidity (r) are invaded by the respective random variables 

D and R.  

𝑇𝑎𝑛𝑑𝐷,𝑅 =⁡
𝐸(𝐿)

𝑃(𝐷>𝑑⁡⁡𝑎𝑛𝑑⁡⁡⁡𝑅>𝑟)
=⁡

𝐸(𝐿)

1−𝐹𝐷(𝑑)−𝐹𝑅(𝑟)+𝐹𝐷,𝑅(𝑑,𝑟)
⁡=

𝐸(𝐿)

1−𝐹𝐷(𝑑)−𝐹𝑅(𝑟)+𝐶(𝐹𝐷(𝑑),𝐹𝑅(𝑟))
⁡⁡ (4) 

𝑇𝑜𝑟𝐷,𝑅 =⁡
𝐸(𝐿)

𝑃(𝐷>𝑑⁡⁡𝑜𝑟⁡⁡⁡𝑅>𝑟)
=⁡

𝐸(𝐿)

1−𝐶(𝐹𝐷(𝑑),𝐹𝑅(𝑟))
  (5) 

The univariate return period of dust and wet extreme can be written as follows: 

𝑇𝐷 =
𝐸(𝐿)

𝑃(𝐷>𝑑)
=

𝐸(𝐿)

1−𝐹𝐷(𝑑)
 (6) 

𝑇𝑅 =
𝐸(𝐿)

𝑃(𝑅≥𝑟)
=

𝐸(𝐿)

1−𝐹𝑅(𝑟)
 (7) 

 

3. Results and discussion 

3.1. Interdependence of variables 

In this section, Pearson, Spearman, and Kendall correlation methods were used to recognize 

the correlation influence of dust and wet extreme on the probability of wet mud deposition 

events. Results are summarized in Table 2 and indicate the negative correlation between 

variables. Kendall correlation values calculated demonstrate a strong association between dust 

and relative humidity (P-value -0.212). 

Table 2. Correlation coefficient tests result between dust and relative humidity 

Correlation test Statics p-value 

Mann-Kendall z = -17.377 -0.212 

Pearson t = -16.091 -0.246 

Spearman S = 1.3759e+10 -0.273 

 

3.2. Copula function selection and Return periods 

3.2.1. Bivariate Return periods 

Based on the lowest AIC, BIC, and the greatest log-likelihood (Table 3), Frank, Gaussian, and 

Student-t were selected as the candidate's copula for modeling the association structure between 

dust and humidity extreme variables. The Gaussian copula was the best-fitted copula (Table 3) 

and was used to estimate the bivariate return period of a wet mud deposition event (WMD).  

Table 3. AIC and BIC values of the three selected copula functions 

Family Logic AIC BIC 

Gaussian copula 161.51 -321.03 -314.73 

t copula 152.39 -300.78 -288.19 

Frank copula 150.56 -299.13 -292.83 
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Figure 2 shows the density function (a) and distribution function (b) of the Gaussian copula.  

  

Fig. 2. Density function (a) and distribution function (b) of the best-fitted copula 

 

Figure 3 also shows the contour plots of the bivariate return periods of wet mud deposition 

based on the Gaussian copula function. 

 

Fig. 3. The contour plots of the bivariate return periods of wet mud deposition based on the Gaussian 

copula function 

 

To assess the bivariate return periods (TDR and T'DR), the joint distribution of dust and 

relative humidity was applied to the Gaussian copula function using expressions (4) and (5). 

The joint return period for TDR results is summarized in table 4. The wet mud deposition joint 

return period, in general, for different levels of dust (6, 4, and 2-hourly) and humidity (79, 72, 

and 65 %) are estimated to be greater than 200 years. 

As shown in Table 5, the calculated joint return period for T'DR for different dust levels (6, 

4, and 2-hourly) and humidity (79, 72, and 65 %) is lower than 20 years. We argue that joint 

return period T'DR to determine the bivariate return period has higher accuracy. 

(b) (a) 
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Table 4. The joint return period for TDR of wet mud deposition 

Minimum relative humidity 

(%) 

Minimum dust 

(Hour) 

The turning point period 

(Year) 

79 6 7145.6 

72 4 940.16 

79 4 1268.26 

72 2 518.94 

65 2 291.95 

 

Table 5. The joint return period for T'DR of wet mud deposition 

Minimum relative humidity 

(%) 

Minimum dust 

(Hour) 

The turning point period 

(Year) 

79 6 20.16 

72 4 10.11 

79 4 13.4 

72 2 8.13 

65 2 6.82 

 

3.2.2. Univariate Return periods 

The univariate return periods were calculated based on relative humidity (TRH) and dust (TD) 

associated with the selected return levels, and the results are summarized in table 6. 

Several marginal distributions were fitted to the relative humidity and dust. Regarding 

relative humidity data, Gamma distribution was selected based on the smallest AIC and BIC. 

Results are presented in Table 6. 

Table 6. AIC and BIC values of the different fitted marginal distributions to relative humidity  

Goodness-of-fit criteria Exponential Normal log-Normal Weibull Gamma 

AIC 38007.14 35441.45 34926.24 34960.59 34815.74 

BIC 38013.44 35454.05 34938.84 34973.19 34828.34 

 

The univariate return period is estimated based on relative humidity associated with the 

selected return levels (90, 80, and 70 %) using expressions (6). Results are summarized in 

Table 7. 

Table 7 The univariate return periods based on different levels of relative humidity 

Relative humidity (%) Return period (Year) 

90 43.2 

80 20.4 

70 12.2 

 

Considering several marginal distributions were fitted to the dust, the Exponential 

distribution was sorted out based on the smallest AIC and BIC. Results are presented in Table 
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8. Exponential distribution was selected based on the smallest AIC and BIC. 

Table 8. AIC and BIC values of the different fitted marginal distributions to dust 

 

Correspondingly, analyses related to univariate return periods based on dust associated with 

the selected return levels (4, 5, and 6 hours) using expressions 7. Results are summarized in 

Table 10 

Table 9. The univariate return periods based on different levels of dust 

Dust (hourly) Return period (Year) 

4 84 

5 253 

6 763 

 

3.3 Dominant climatic conditions 

3.3.1. Investigating the trend of changes 

Figure 4 (a) and (b) show the annual trend of the frequency of days with dust and relative 

humidity in Khuzestan stations. The annual trend of dust increases during spring and summer 

and decreases in the fall and winter. The maximum and minimum dust levels are recorded in 

June and November, respectively. 

In addition, the analysis of relative humidity annual trend revealed that the highest rate of 

humidity occurs in December, January, and February (cold period), and the lowest rate of 

humidity occurs in May, June, and July (warm period). Therefore, we can argue dust and 

relative humidity have an opposite trend through the year. The analysis of the monthly trend in 

2017 (Figure 4 (c) and (d)) demonstrates that the trends of the frequency of dust days and 

relative humidity follow the same pattern as long-term annual trends.  

We argue that dust extreme occurs in just some rare cases in fall and winter, but it has been 

hypothesized that climate changes can change the patterns of dust occurrence. From October 

to March 2017, there was a notable ascending trend in the frequency of dust days in February. 

We argue that the peak of dust extreme frequency in February, considering the humid air 

conditions, is the main reason for mud deposition on the surface of Khuzestan urban areas.  

 

4. Conclusion 

Southwest Iran has been identified as one of the region’s most vulnerable to the impacts of 

dust extremes associated with urban systems. Under the influence of the sedimentation of wet 

mud on the power systems, Khuzestan citizens experienced the strong impact of blackouts 

causing great pressure on the urban infrastructure and people's daily activities. These 

consequences include a lack of health facilities, defects in communication and social 

networks, a reduction in water supply, and food production losses. Sedimentation of wet mud 

on the power systems in Khuzestan province could be viewed as too rare and there aren't many 

cases of such event through the history of the province. However, many research studies have 

been performed on dust accumulation on PV and solar thermal surfaces particularly in the 

Goodness-of-fit criteria Poisson Normal Exponential Nbinom 

AIC 14749.23 16940.60 7224.347 8829.024 

BIC 14755.52 16953.19 7230.645 8841.620 



140  DESERT, 29-2, 2024 

 

 

Persian Gulf region which has similar weather conditions as Khuzestan. 

 

  

  

Fig. 4. (a) and (b) Annual trends of dust and relative humidity period 2009-2019, (c) and (d) Monthly 

trend of relative humidity in Khuzestan synoptic stations in 2017 

 

Isaifan et al. (2018) evaluate the adhesion forces between dust particles and solar panels in 

Qatar. They showed that under high relative humidity, the adhesion mechanism between dust 

particles and PV module surfaces is dominated by capillary force. 

Adukwu et al. (2020) investigated the adhesion of environmental dust by hydrofluoric acid 

solution treated on photovoltaic panel surfaces in the local area of Dammam in Saudi Arabia. 

Caron & Littmann (2013) introduced a practical method for measuring the soiling rate to 

full recovery of module performance in the United States. 

Our findings revealed that dust extremes follow specific seasonal patterns (figure 4 a and 

b), but in recent years, have shown anomalies in the cold seasons due to climate changes and 

the adverse effects associated with human intervention such as land degradation and 

desertification. These anomalies increase the probability of dust extreme coincidence with wet 

extreme. Therefore, the likelihood of the occurrence of wet mud hazards is expected to be high 

in the cold seasons of the year.  

Here, we used the return period and risk assessment as critical solutions for adaptation and 

mitigation to combat and amplify the impacts of wet mud deposition. It is seen that traditional 

empirical methods seem insufficient; therefore, copula families were used to analyze 
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univariate and joint return periods of compound dust and wet extremes in this study.  

It should be noted that the estimated joint return period for TDR compared to the joint return 

period for T'DR return periods for various levels of minimum relative humidity and dust hours 

are rather unrealistic and, their uncertainties are pretty large. The joint return period for TDR is 

estimated to be greater than 200 years and the joint return period for T'DR is to be lower than 

20 years. By considering only relative humidity data (different levels are 79, 72, and 65 %), 

the return period of mud adhesion hazard in Khuzestan in 2017 is approximately 12 to 43 

years. If we merely consider dust (different levels are 6, 4, and 2 hourly), the return period of 

mud adhesion hazard in Khuzestan in 2017 is estimated at 80 to 700 years. 

Based on the results, we suggest developing strategies for adaptation to wet mud deposition 

hazards considering the examination of the vulnerability of the power systems in terms of 

system operation and components. Khuzestan mud adhesion hazard was such a rare and 

unusual cooccurrence of dust extremes and humid ambient air, which makes it difficult to 

foresee, mainly because there were no observed historical analogs. In fact, an increase in the 

number of extreme dust events and limited adaptive capacity to wet mud deposition hazards 

have put the lives of people in the urban areas of Khuzestan province at risk.   

Therefore, this study tried to prepare a historical record of this event to provide information 

on how it may occur in future. Particularly, strategies should be defined to reduce the degree 

of the vulnerability of Khuzestan power networks to dust extreme impacts and empower the 

authorities to handle this issue. In this case, the use of adaptation approaches could be assisted. 

However, although in this study dust and relative humidity have been considered the most 

limiting variables which control the occurrence of wet mud deposition, other variables such as 

temperature, sea surface temperature, precipitation, and wind speed should be considered in 

future studies. 
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